¹Ýµð¾Ø·ç´Ï½º ÀÎÅͳݼ­Á¡

³×ºñ°ÔÀÌ¼Ç ½Ç½Ã°£ Àαâ Ã¥

    IGCSE Additional Mathemathics : ¹Ì±¹ ¼öÇÐ/±¹Á¦Çб³ ¼öÇÐÀ» ¿ä¸®ÇÏ´Ù!

    IGCSE Additional Mathemathics : ¹Ì±¹ ¼öÇÐ/±¹Á¦Çб³ ¼öÇÐÀ» ¿ä¸®ÇÏ´Ù!

    • ÀÌ¿¬¿í Àú
    • Ç츣¸óÇϿ콺
    • 2023³â 07¿ù 05ÀÏ
    • Á¤°¡
      24,000¿ø
    • ÆÇ¸Å°¡
      21,600¿ø [10% ÇÒÀÎ]
    • °áÁ¦ ÇýÅÃ
      ¹«ÀÌÀÚ
    • Àû¸³±Ý
      1,200¿ø Àû¸³ [5%P]

      NAVER Pay °áÁ¦ ½Ã ³×À̹öÆäÀÌ Æ÷ÀÎÆ® 5% Àû¸³ ?

    • ¹è¼Û±¸ºÐ
      ¾÷ü¹è¼Û(¹ÝµðºÏ)
    • ¹è¼Û·á
      ¹«·á¹è¼Û
    • Ãâ°í¿¹Á¤ÀÏ

      Ãâ°í¿¹Á¤ÀÏ ¾È³»

      ¡Ø Ãâ°í¿¹Á¤ÀÏÀº µµ¼­ Àç°í»óȲ¿¡ µû¶ó º¯µ¿µÉ ¼ö ÀÖ½À´Ï´Ù.

      close

      2025³â 05¿ù 12ÀÏ(¿ù)

      ¡Ø Ãâ°í¿¹Á¤ÀÏÀº µµ¼­ Àç°í»óȲ¿¡ µû¶ó º¯µ¿µÉ ¼ö ÀÖ½À´Ï´Ù.

    ¼ö·®
    ȸ¿ø¸®ºä
    - [0]
    ISBN: 9791192520520 384ÂÊ 730g 210 x 280 (§®)

    Áö±Ý ÀÌÃ¥Àº

    • ÆÇ¸ÅÁö¼ö : 0

    ÀÌ ºÐ¾ßÀÇ º£½ºÆ®¼¿·¯

    ÀúÀÚ ¼Ò°³

    ÀÌ¿¬¿í

    ÀúÀÚ : ÀÌ¿¬¿í
    ¹Ì±¹ ¹öÁö´Ï¾ÆÀÇ No.1 ¼öÇÐÀü¹® ÇпøÀÎ ¼Ö·Î¸ó Çпø(Solomon Academy)ÀÇ ´ëÇ¥ÀÌÀÚ ¼ÒÀ§ ¸»ÇÏ´Â 1Ÿ ¼öÇÐ °­»çÀÌ´Ù. ¹öÁö´Ï¾Æ¿¡ À§Ä¡ÇÑ ¸í¹® Å丶½º Á¦ÆÛ½¼ °úÇаí(Thomas Jefferson High School for Science & Technology) ¹× ¹öÁö´Ï¾Æ ÁÖÀÇ À¯¸íÇÑ »ç¸³, °ø¸³Çб³ÀÇ ¼ö ¸¹Àº ÇлýÀ» ÁöµµÇϸ鼭 ¸í¼ºÀ» ½×¾Ò°í ÁÁÀº °á°ú·Î ÀÔ¼Ò¹®ÀÌ ³ª ÀÖ´Ù. ±×ÀÇ ¼ö¸¹Àº Á¦ÀÚµéÀÌ Harvard, Yale, Princeton, MIT, Columbia, Stanford ¿Í °°Àº ¾ÆÀ̺ñ¸®±× ¹× ¿©·¯ ¸í¹® ´ëÇб³¿¡ ÀÔÇÐÇÏ¿´À» »Ó¸¸ ¾Æ´Ï¶ó, ÁßÇб³ ¼öÇаæ½Ã´ëȸÀÎ MathCounts¿¡¼­´Â ¹öÁö´Ï¾Æ ÁÖ ´ëÇ¥ 5¸í Áß¿¡ 3¸íÀÌ ¹Ù·Î ¼±»ý´ÔÀÇ Á¦ÀÚ¶ó´Â Á¡°ú, ÁöµµÇÑ ´Ù¼öÀÇ ÇлýµéÀÌ ¹Ì±¹ °í ±³ ¼öÇаæ½Ã´ëȸÀÎ AMC, AIME¸¦ °ÅÃÄ USAMO¿¡ ÀÔ»óÇÑ »ç½ÇµéÀº ¼±»ý´ÔÀÇ Áöµµ¹æ½Ä°ú ´É·ÂÀ» ÀÔÁõÇϰí ÀÖ´Ù. ÇöÀç ¹Ì±¹°ú Çѱ¹À» ¿À°¡¸é¼­ °­ÀÇÇϰí ÀÖÀ¸¸ç, Çѱ¹¿¡¼­´Â SAT Àü¹® Çпø¿¡¼­ÀÇ °­ÀÇ¿Í ´õºÒ¾î No.1 À¯ÇÐÀü¹® ÀÎÅÍ³Ý °­ÀÇ »çÀÌÆ®ÀÎ ¸¶½º ÅÍÇÁ·¾¿¡¼­ SAT 2 Math Level 2 °­ÀǸ¦ ½ÃÀÛÀ¸·Î AP Calculus¿Í ±× ¿ÜÀÇ ´Ù¸¥ ¼öÇÐ °ú¸ñÀ» ¿µ¾î ¹öÀü°ú Çѱ¹¾î ¹öÀüÀ¸·Î °­ÀÇÇϰí ÀÖ´Ù. ¾Æ¸¶Á¸´åÄÄ¿¡¼­ ¹Ì±¹¼öÇÐÀü¹® ±³ÀçÀÇ ½ºÅ׵𼿠·¯ ÀúÀÚÀ̱⵵ ÇÑ ¼±»ý´ÔÀº SAT 2 Math Level 2, SAT 1 Math, SHSAT/ TJHSST Math workbook, IAAT¿Í AP Calculus AB & BC µî ´Ù¼öÀÇ Ã¥À» ÃâÆÇÇÏ¿´°í, Áö±Ýµµ ¿©·¯ ¼öÇÐÃ¥À» ÁýÇÊ ÁßÀ̸ç Çѱ¹¿¡¼­µµ Áö¼ÓÀûÀ¸·Î ¼±»ý´ÔÀÇ Ã¥ÀÌ ½Ã¸®Áî·Î ¼Ò°³µÉ ¿¹Á¤ÀÌ´Ù.

    ¸ñÂ÷

    CHAPTER 1 Functions 9
    1.1 Definition of a function 9
    1.2 Composition functions 13
    1.3 Modulus or absolute value functions 14
    1.4 Inverse functions 16
    1.5 Transformations 19
    CHAPTER 2 Quadratics 29
    2.1 Quadratic functions 29
    2.2 Maximum and minimum value by completing the square 31
    2.3 Solving quadratic equations 32
    2.4 Solving quadratic inequalities 34
    2.5 Discriminant of a quadratic equation 35
    CHAPTER 3 Indices and surds 43
    3.1 Simplifying expressions involving indices 43
    3.2 Solving equations involving indices 45
    3.3 Simplifying expressions involving surds 47
    3.4 Rationalizing the denominator 48
    3.5 Solving equations involving surds 49
    CHAPTER 4 Factors of polynomials 57
    4.1 Operations with polynomials 57
    4.2 Finding zeros of a polynomial function 59
    4.3 The remainder theorem 60
    4.4 The factor theorem 62
    4.5 Rational zeros theorem 64
    4.6 Graphing cubic functions 67
    4.7 Solving cubic inequalities graphically 68
    CHAPTER 5 Logarithmic and exponential functions 77
    5.1 Logarithms 77
    5.2 Properties of logarithms 79
    5.3 Solving exponential and logarithmic Equations 82
    5.4 Graphs of logarithmic and exponential functions 84
    5.5 Graphs of y \u003d kenx+ a and y \u003d k ln (ax+b) 85
    CHAPTER 6 Straight-line graphs 95
    6.1 Coordinate geometry 95
    6.2 Finding areas of polygons using shoelace method 98
    6.3 Linear law 100
    CHAPTER 7 Coordinate geometry of circles 109
    7.1 The standard equation of a circle 109
    7.2 Intersection of a circle and a straight line 111
    7.3 The equation of a tangent line to a circle 113
    7.4 Intersection of two circles 114
    CHAPTER 8 Trigonometry 119
    8.1 Circular measure 119
    8.2 Finding the exact value of the trigonometric functions 123
    8.3 Graphs of trigonometric functions 128
    8.4 Solving trigonometric equations 134
    8.5 Proving trigonometric identities 136
    8.6 Area of non-right angled triangles 138
    8.7 Solving triangles using the law of sines and cosines 139
    CHAPTER 9 The binomial theorem 155
    9.1 The Fundamental Counting Principle 155
    9.2 Permutation and combination 157
    9.3 The binomial theorem 159
    CHAPTER 10 Sequence and series 169
    10.1 Sequence 169
    10.2 Series 172
    CHAPTER 11 Vectors 181
    11.1 Vector notation 181
    11.2 Algebraic operations on vectors 183
    11.3 Vector geometry 184
    11.4 Constant velocity problems 191
    CHAPTER 12 Derivative functions 199
    12.1 Instantaneous rate of change 199
    12.2 Finding the derivative functions 202
    12.3 Tangent and normal lines 204
    CHAPTER 13 Differentiation rules 211
    13.1 The product and quotient rules 211
    13.2 The chain rule 214
    13.3 The second derivative 217
    CHAPTER 14 Applications of differentiation 225
    14.1 Small increments and approximations 225
    14.2 Related rates 228
    14.3 Understanding a curve from the first and second derivatives 231
    14.4 Local maximum and local minimum 233
    14.5 Practical maximum and minimum problems 236
    CHAPTER 15 Integration 245
    15.1 Indefinite integrals 245
    15.2 The U-Substitution rule 250
    15.3 Definite integrals 254
    15.4 Area between two curves 257
    15.5 Kinematics 260

    ¹è¼Û ½Ã À¯ÀÇ»çÇ×

    - ¹Ýµð¾Ø·ç´Ï½º¿¡¼­ ±¸¸ÅÇϽеµ¼­´Â ¹°·ù ´ëÇà À§Å¹¾÷ü ¿õÁø ºÏ¼¾À» ÅëÇØ ¹è¼ÛµË´Ï´Ù.
     (¹è¼Û Æ÷Àå¿¡ "¿õÁø ºÏ¼¾"À¸·Î Ç¥±âµÉ ¼ö ÀÖ½À´Ï´Ù.)

    - ±¸¸ÅÇÑ »óǰÀÇ Ç°Áú°ú ¹è¼Û °ü·Ã ¹®ÀÇ´Â ¹Ýµð¾Ø·ç´Ï½º·Î ¹®ÀÇ ¹Ù¶ø´Ï´Ù.

    - õÀçÁöº¯ ¹× Åùè»çÀÇ »çÁ¤¿¡ µû¶ó ¹è¼ÛÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.

    - °áÁ¦(ÀÔ±Ý) ¿Ï·á ÈÄ ÃâÆÇ»ç ¹× À¯Åë»çÀÇ »çÁ¤À¸·Î ǰÀý ¶Ç´Â ÀýÆÇ µÇ¾î »óǰ ±¸ÀÔÀÌ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. (º°µµ ¾È³» ¿¹Á¤)

    - µµ¼­»ê°£Áö¿ªÀÇ °æ¿ì Ãß°¡ ¹è¼Ûºñ°¡ ¹ß»ýµÉ ¼ö ÀÖ½À´Ï´Ù.

    ¹Ýǰ/±³È¯

    »óǰ ¼³¸í¿¡ ¹Ýǰ/ ±³È¯ °ü·ÃÇÑ ¾È³»°¡ ÀÖ´Â °æ¿ì ±× ³»¿ëÀ» ¿ì¼±À¸·Î ÇÕ´Ï´Ù. (¾÷ü »çÁ¤¿¡ µû¶ó ´Þ¶óÁú ¼ö ÀÖ½À´Ï´Ù)

    ¹Ýǰ/±³È¯

    ¹Ýǰ/±³È¯
    ¹Ýǰ/±³È¯ ¹æ¹ý Ȩ > °í°´¼¾ÅÍ > ÀÚÁÖã´ÂÁú¹® ¡°¹Ýǰ/±³È¯/ȯºÒ¡± ¾È³» Âü°í ¶Ç´Â 1:1»ó´ã°Ô½ÃÆÇ
    ¹Ýǰ/±³È¯ °¡´É ±â°£ ¹Ýǰ,±³È¯Àº ¹è¼Û¿Ï·á ÈÄ 7ÀÏ À̳», »óǰÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦¹ß°ß ÈÄ 30ÀÏ À̳»¿¡ ½Åû°¡´É
    ¹Ýǰ/±³È¯ ºñ¿ë º¯½É ȤÀº ±¸¸ÅÂø¿ÀÀÇ °æ¿ì¿¡¸¸ ¹Ý¼Û·á °í°´ ºÎ´ã(º°µµ ÁöÁ¤ Åùè»ç ¾øÀ½)
    ¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯
    • ¼ÒºñÀÚÀÇ Ã¥ÀÓ »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    • ¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    • º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì : ¿¹)¸¸È­Ã¥, ÀâÁö, È­º¸Áý µî
    • ½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    • ÀüÀÚ»ó°Å·¡µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì
    • ÇØ¿ÜÁÖ¹® »óǰ(ÇØ¿Ü ¿ø¼­)ÀÇ °æ¿ì(ÆÄº»/ÈѼÕ/¿À¹ß¼Û »óǰÀ» Á¦¿Ü)
    ¼ÒºñÀÚ ÇÇÇØº¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó
    • »óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ¹Ýǰ, ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº
      ¼ÒºñÀÚ ºÐÀïÇØ°á ±âÁØ(°øÁ¤°Å·¡À§¿øÈ¸°í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê
    • ´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ
      ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ
    ¹Ýǰ/±³È¯ ÁÖ¼Ò °æ±âµµ ÆÄÁֽà ¹®¹ß·Î 77, ¿õÁøºÏ¼¾(¹Ýµð¾Ø·ç´Ï½º)
    • ȸ»ç¸í : (ÁÖ)¼­¿ï¹®°í
    • ´ëÇ¥ÀÌ»ç : ±èÈ«±¸
    • °³ÀÎÁ¤º¸ º¸È£Ã¥ÀÓÀÚ : ±èÈ«±¸
    • E-mail : bandi_cs@bnl.co.kr
    • ¼ÒÀçÁö : (06168) ¼­¿ï °­³²±¸ »ï¼º·Î 96±æ 6
    • »ç¾÷ÀÚ µî·Ï¹øÈ£ : 120-81-02543
    • Åë½ÅÆÇ¸Å¾÷ ½Å°í¹øÈ£ : Á¦2023-¼­¿ï°­³²-03728È£
    • ¹°·ù¼¾ÅÍ : (10881) °æ±âµµ ÆÄÁֽà ¹®¹ß·Î 77 ¹Ýµð¾Ø·ç´Ï½º
    copyright (c) 2016 BANDI&LUNI'S All Rights Reserved